Respiratory parameters in elite athletes – does sport have an influence?
S.. Mazica, B.. Lazovicb,, , M.. Djelica, J.. Suzic-Lazicc, S.. Djordjevic-Saranovicd, T.. Durmicb, I.. Soldatovice, D.. Zikicf, Z.. Gluvicb, V.. Zugicg
a Institute of Medical Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
b University Hospital Center Zemun-Belgrade, Internal Medicine Clinic, Belgrade, Serbia
c University Hospital Center Dr Dragisa Misovic, Internal Medicine Clinic, Belgrade, Serbia
d National Institute of Sport, Belgrade, Serbia
e Institute of Statistics, School of Medicine, University of Belgrade, Belgrade, Serbia
f Institute of Medical Biophysics, School of Medicine, Belgrade University, Belgrade, Serbia
g School of Medicine, University of Belgrade, Clinic for Lung Diseases, Clinical Center of Serbia, Belgrade, Serbia
Abstract
Introduction

Unlike large population studies about cardiovascular components and how they adapt to intensive physical activity, there is less research into the causes of enlargement of the respiratory system in athletes (e.g. vital capacity, maximum flow rates and pulmonary diffusion capacity). The purpose of this research was to study and compare pulmonary function in different types of sports and compare them with controls in order to find out which sports improve lung function the most.

Materials and method

Pulmonary functional capacities, vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and maximum voluntary ventilation (MVV) of 493 top athletes belonging to 15 different sports disciplines and of 16 sedentary individuals were studied. Pulmonary function test was performed according to ATS/ERS guidelines.

Results

Basketball, water polo players and rowers had statistically higher vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in one second (FEV1) than the healthy sedentary control individuals. Football and volleyball players had lower VC while FVC was higher in the football group compared to controls. Peak expiratory flow was lower in boxing, kayak, rugby, handball, taekwondo and tennis. The maximum voluntary ventilation (MVV) was significantly higher in water polo players and rowers. Boxers had statistically lower MVV than the controls. Players of other sports did not differ from the control group.

Conclusion

The study suggests that specific type of training used in basketball, water polo or rowing could have potential for improving pulmonary function and rehabilitation.

Keywords
Lung volumes, Male athlete, VC, FEV1, FVC

Metrics

  • Impact Factor: 1.560(2016)
  • 5-years Impact Factor: 1,100
  • SCImago Journal Rank (SJR):0,29
  • Source Normalized Impact per Paper (SNIP):0,685