percentage, a semi-quantitative evaluation of Glasgow Microenvironment Score\(^1\) was performed. Also, Glasgow Prognostic Score, that is widely known as a systemic inflammatory-based marker, was determined for each patient.\(^3\)

Results: Diabetic patients presented a significant higher glycemia than the control patients (190.1 ± 13.6 mg/dL vs 98.2 ± 3.6 mg/dL, \(p < 0.001\), respectively). Decreased survival rates were observed in diabetic patients (611.5 vs 916.0, \(p = n.s\)). Tumours exhibited increased fibrosis relatively to the adjacent mucosa in both groups and diabetic patients (N: 9.362 ± 1.337; \(T: 12.29 ± 1.407\)) presented higher fibrosis levels than the non-diabetic patients (N: 7.165 ± 1.017; \(T: 10.97 ± 1.076\).

Conclusion: Expected results: Identifying the distinct features that characterize GC of DM2 patients compared to non-diabetic patients (namely fibrosis, angiogenesis, inflammation, and oxidative stress biomarkers) will enable to study this subset of GC patients and unravel key mechanisms behind the relationship between DM2 and GC.

Acknowledgements: Funding: This work was supported by the project Diabetes & obesity at the crossroads between Oncological and Cardiovascular diseases – a system analysis NETwork towards precision medicine (DOCNet) – A multi-omics approach to decipher diabetes-related molecular targets in cancer: a step towards precision medicine. NORTE2020 – “Programa Operacional Regional do Norte” (NORTE-01-0145-FEDER-000003) (Jan 2016-Dez 2018).

References

http://dx.doi.org/10.1016/j.pbj.2017.07.120

PS229

Circulating EVs for AML minimal residual disease biomarkers detection

P.C. Nunes \(^1\), H.R. Cairaes \(^2\), M.A. Sobrinho-Simões \(^3\), M.H. Vasconcelos \(^4\)

\(^1\) Cancer Drug Resistance Group, IPATIMUP – Instituto de Molecular Pathology and Immunology of the University of Porto, Portugal; \(^2\) Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; \(^3\) ICBRAS-UP – Institute of Biomedical Sciences Abel Salazar of the University of Porto, Portugal

Aim: We propose to evaluate the feasibility of a peripheral blood EV-based liquid biopsy method for AML disease monitoring in real time with molecular precision.

Introduction: Acute myeloid leukemia (AML) is a hematopoietic stem cell disorder with high mortality rate mainly due to the high frequency of post-treatment relapse. Minimal residual disease (MRD) determination in AML patients receiving treatment is useful to assess chemotherapy response and predict relapse. One approach to upgrade the current invasive MRD monitoring (traditionally based on bone marrow aspirates/biopsies) is to use methods that identify cancer-associated biomarkers in patients’ blood. Recently, extracellular vesicles (EVs) have been increasingly recognized as a potential source of biomarkers, since the levels of EVs are markedly increased in cancer patients’ blood and those EVs potentially carry molecular signatures associated with specific cancer phenotypes.

Methods: The profile of EVs isolated from AML patients’ blood plasma collected from paired AML diagnostic and complete remission samples is being compared and correlated with clinical data. A size-exclusion chromatography (SEC) method was optimized to isolate the plasmatic EVs. The EVs profile is then characterized according to their size, plasmatic concentration, morphology and protein content.

Results: EVs with decreasing size were successfully isolated between SEC fractions 3 to 6, with a size ranging from 300 nm to 30 nm, respectively. Fraction 7 presented the smaller EVs, although mixed with some plasmatic protein contaminants. The expression of EVs markers such as CD63, HSP70 or Syntenin-1 was confirmed between SEC fractions 3 to 7. The expression of leukemia-specific markers is currently being studied in the EVs isolated from the paired AML blood samples.

Conclusion: The presented EV-based liquid biopsy proposed method for AML monitoring could unravel biomarkers for diagnostic and prognostic purposes in AML patients.

http://dx.doi.org/10.1016/j.pbj.2017.07.121

PS232

The association of Generalized Epilepsy with Febrile Seizures plus (GEFS+) with FEB1 gene: A new insight to the etiology of GEFS+

Ali Rafati \(^1\), Shahram Teimourian \(^2\)

\(^1\) Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; \(^2\) Department of Medical Genetics, Iran University of Medical Sciences Tehran Iran

E-mail address: rafatiali1995@gmail.com (A. Rafati).