Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion within the huntingtin gene (HTT). Despite being a monogenic disorder, for which the mutation has been known for some time now, no cure or disease-modifying therapy is available, indicating that novel approaches are critical.

Somatic CAG repeat instability, characteristic of mutant HTT alleles, is inversely correlated with patient age of onset and may contribute to HD pathogenesis. This phenotype, common to other trinucleotide repeat disorders, was previously shown to be DNA mismatch repair (MMR) dependent. The DNA repair machinery was further implicated as a modifier of HD age of motor onset in a recent genome wide association study, underlining its promise as a relevant disease mechanism that could potentially be therapeutically targeted.

In this study, we are developing a CRISPR/Cas9-based approach that will enable the investigation of candidate genetic modifiers of HD age of onset as potential modifiers of somatic CAG repeat instability in a HD mouse model.

Methods: We have developed CRISPR reagents against known and candidate genetic modifiers of somatic CAG instability in Huntington's disease. In preliminary experiments, we treated HD mice with CRISPR reagents against Mlh1 and investigated the level of gene editing achieved as well as the impact on liver CAG instability.

Results: We were able to significantly suppress the CAG expansion process in the liver of HD mice by knocking out the Mlh1 gene in our in vivo CRISPR platform. The efficiency achieved in modifying the instability phenotype makes us very confident that we will be able to test and validate additional candidate modifiers. To that end, we have already validated reagents for efficient knockout of a subset of known and candidate modifier genes and we have developed assays that will allow detailed characterization of gene editing at these sites.

Conclusion: We have successfully developed an in vivo CRISPR-Cas9-based platform that allows for knocking out genes of interest in the liver of adult mice, and consequently perturb the somatic CAG expansion process. We will next use this tool to test the role that candidate genes might play in that disease-relevant process. While the scope of this project was liver oriented, future work will also be aimed at targeting the striatum which is the main site of HD-related pathology.

References

http://dx.doi.org/10.1016/j.pbj.2017.07.083
P060

Peculiarities of expression of apoptosis markers in the tissues of primary fallopian tube carcinoma

Franklin Unawunwa*, Natalia Hyriavenko, Anna Korobchanska, Mykola Lyndin, Vladyslav Sikora

Sunny State University

E-mail address: unawunwafranklin@yahoo.com (F. Unawunwa).

Aim: Immunohistochemical analysis of apoptosis markers in the tissue of PFTC.

Introduction: Primary fallopian tubes carcinoma is a rare case among oncological diseases of female genital organs, but the mortality rate is rather high. Nowadays, the prognostic factors of this neoplasia are not fully determined. The data on the p53 and bcl2 proteins expression and their use as prognostic factors in patients with malignant tumors of many locations are contradictory.

Methods: The study was conducted on 66 samples of fallopian tubes tumor tissue. To study the apoptosis peculiarities of tumor cells the mouse monoclonal antibodies for bcl-2 (clone 100/D5) and p53 (clone SP5) were used. Mathematic calculations were done using Microsoft Excel 2010 with AtteStat 12.0.5.

Results: The high expression of p53 was found in patients of all clinical stages. Mutations of p53 increased with spreading of the neoplastic process. Strong correlation of p53 presence in tumor samples and clinical stage of the disease was determined ($r = 0.77$). In contrast to the abovementioned protein the study of bcl-2 showed the moderate negative correlation between this protein and the stage of the disease ($r = -0.54$). Analysis of the dependence of p53 expression with the presence or absence of lymph nodes metastasis showed a direct correlation between the indicators ($r = 0.25$). Thus the level of p53 expression in patients with N1 was $80.6 \pm 2.7\%$ compared with the N0 group ($29.7 \pm 3.6\%$).

Conclusion: Expression of p53 depends on neoplasia spreading and stage of tumor differentiation. The expression of p53 is an independent prognostic marker for N-status and helps to classify the patients into “risk” groups.

Acknowledgements: Supervisor: A. M. Romaniuk, prof., doctor of medical sciences, Department of Pathological Anatomy, Medical Institute, Sumy State University.

http://dx.doi.org/10.1016/j.pbj.2017.07.086