if there are neuroprotective effects in the immature granule cells stained with the neurogenesis marker dou-
we used high-dose
ever, reports have questioned its effectiveness. To clarify this issue
to a control group (weight, intraperitoneally) (F.
Analysis of variations in the F5, F2 and ACE
genes among Latvian patients with ischemic
stroke is the second leading cause of disability. Genetic vari-
tions in Leiden factor coding gene (F5) and in prothrombin gene (F2)
cause inherited thrombophilia which is associated with increased
risk of intravascular thrombosis, thromboembolism and cerebral
stroke. Angiotensin-converting enzyme (ACE) coding gene I/D vari-
ant is discussed among numerous conditions including stroke.

Methods: In the study there were included 115 patients with
mean age 70.3 ± 11.0 years, with diagnosed ischemic stroke. Con-
trol group for F5 and F2 gene variations consisted of 124 individuals
with mean age 55.6 ± 14.6 years. And for ACE gene variation 248
individuals with mean age 56.8 ± 11.4 years. DNA was extracted
from peripheral blood using standard phenol-chloroform method.
Genotyping of F5 gene variant G1691A and F2 gene variant
G20210A was performed using PCR-RFLP. ACE gene I/D variant
genotyping were performed using PCR. Statistical analysis was perfor-
med using Fisher’s exact test and SPSS v22.0 software.

Results: F2 gene variant were more frequent in patient group. Frequency in patients were 0.017 and in control group 0 (p = 0.038).
F5 gene variant frequency in both patients and control group were
0.012 (p > 0.05). Seven patients (5.6%) had one variant in one of
cogulation factors encoding genes comparing to three in control
group (2.4%) (p > 0.05). Mean age for patients with identified varia-
tions in F2 or F5 was not significantly different comparing to other
patients (p > 0.05). ACE gene I/D genotypes and allele frequencies
in stroke patients were not significantly different from controls –
I allele frequencies were 0.452 in patients versus 0.470 in controls
(p > 0.05).

Conclusion: Prothrombin encoding gene variant G20210A could be risk factor for ischemic stroke. F5 and ACE gene I/D geno-
types are not associated with ischemic stroke.

http://dx.doi.org/10.1016/j.pbj.2017.07.065

PS205

The bioactive compounds from elderberry to
modulate mitochondrial dysfunctions
underlying Alzheimer’s disease

Dina Neves1,2, João Bernardo1, Patricia Valente1, Maria C. Oliveira2, David M. Pereira1, Paula B. Andrade1, Romeu A. Videira1

1 REQUIME/LAQV. Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-213 Porto, Portugal
2 Centro de Química de Vida Real (CQ-VR), Departamento de Química; Escola de Ciências da Vida e do Ambiente, Universidade de Trás-os-Montes e Alto Douro (UTAD), P.O. Box 1013, 5001-801 Vila Real, Portugal
E-mail address: up201302607@ff.up.pt (D. Neves).

Aim: The specific objective of this work is to establish a cor-
relation between the physical-chemical properties of the aqueous
extract of elderberry (Sambucus nigra L.) and its ability to tune
the cell redox state and to overcome mitochondrial dysfunctions,
which are pathological events with high relevance in Alzheimer’s
disease (AD).

Introduction: Currently, there is no effective medicine to
prevent or delay the progressive brain degeneration underlying
cognitive decline and dementia that characterize AD. Previous
works support the idea that the loss of mitochondrial functionality,
connected with the decline of complex I activity, is able to promote
AD phenotype through the activation of multiple pathophysio-
logical pathways, including oxidative stress, neuroinflammation,
and also tau and amyloid-beta pathologies. Thus, multi-targeted

Analysis of variations in the F5, F2 and ACE
genes among Latvian patients with ischemic
stroke

Anna Inese Tūtāne

Rīga Stradiņš University, Latvia
E-mail address: annatutane@gmail.com.

Aim: Evaluate thrombophilia causing genetic variants and ACE
gene I/D variant impact on patients with ischemic stroke.

Introduction: Every year, 15 million people worldwide suffer a
stroke that is the second leading cause of disability. Genetic vari-
ants in Leiden factor coding gene (F5) and in prothrombin gene (F2)
cause inherited thrombophilia which is associated with increased
Effect of resveratrol on the cartilage and nociceptive system of Osteoarthritic animals

Aim: This study aims to evaluate the effect of RV on the nociceptive behavior, histopathological alterations at the knee and DRG neurons of OA rats.

Methods: Osteoarthritis (OA) is a common degenerative joint disease and arthritic pain is a prominent symptom associated with reduced quality of life. Peripheral pain mechanisms seem to be involved, with cartilage lesions showing a repercussion in Dorsal Root Ganglia (DRG) neurons. Resveratrol, a polyphenol with proven anti-inflammatory, anti-oxidant and neuroprotective properties, has been shown to prevent development of OA and act as an antinociceptive agent. However, its systemic effects once the bupivacaine application in the recovery of the damaged EUS.

Results: Resveratrol was unable to prevent cartilage degeneration but it significantly decreased ATF-3 expression. The nociceptive behavior of OA animals treated with resveratrol increased during the first three weeks of treatment, in comparison to day 14 (before treatment was initiated), as shown by Knee-Bend scores. However, this tendency reverted as the disease progressed.

Conclusion: These results indicate that resveratrol may have antinociceptive effects in the early stages of the disease development, but it might not play such a relevant role once the disease has progressed. Thus, further studies are needed to fully understand the possible role of resveratrol in the different stages of OA.

Acknowledgements: This work received financial support from National Funds (FCT/MEC) through project UID/QUI/50006/2013, co-financed by FEDER through COMPETE, under the Partnership Agreement P2020, and from NORTE 2020, under the PORTUGAL 2020 Partnership Agreement, through ERDF (NORTE-01-0145-FEDER-000024).

http://dx.doi.org/10.1016/j.pbj.2017.07.066

PS173

Bupivacaine treatment enhances the regeneration of the lesioned external urethral sphincter of the rat

J.P. Morais, M. Torrado, A.avelino

Aim: In this study we intend to verify if bupivacaine treatment can be used to enhance the repair of the lesioned urethral sphincter in rat.

Introduction: Stress urinary incontinence (SUI) is a major and frequent urinary dysfunction. It has been associated with external urethral sphincter (EUS) weakness due to several causes. Among them, ischemia and nerve lesion frequently associated with childbirth. The current treatments are mainly surgical but are far from being satisfactory. The local anesthetic bupivacaine is known to exert myotoxic action, followed by muscle regeneration with increased strength. This effect was already used in ocular muscles to treat strabismus. In the present study we evaluated the effect of bupivacaine application in the recovery of the damaged EUS.

Methods: A lesion of the external urethral sphincter (urethrolysis) was performed in adult female Wistar rats using established protocols. Two weeks after the lesion, the animals were injected in the EUS with 0.4 ml of 0.5% bupivacaine. Ten days later, the whole urethra was removed, fixed and sectioned in paraffin wax. Sections approaches supported by mixtures of natural bioactive compounds should reveal more effectiveness than classical therapeutics for AD.

Methods: The polyphenolic profile of elderberry extract and of anthocyanin-enriched fraction was evaluated by HPLC-DAD, the optical properties by UV–vis and fluorescence spectroscopy and the redox behavior by cyclic voltammetry. Antioxidant properties were assessed in cell-free assays while the ability the elderberry extract to modulate the mitochondrial redox chain was evaluated in rat brain mitochondria.

Results: HPLC analyses showed that elderberry extract is a mixture of chemical compounds, particularly rich in anthocyanins. It exhibits intrinsic fluorescence properties with potential for bioimaging, reversible redox behavior and ability to scavenge DPPH, nitric oxide and superoxide radicals. The antioxidant, optical and redox properties of elderberry extract are strongly correlated to their content in anthocyanins. Bioenergetic studies show that elderberry extract has ability to promote the oxidation of NADH in aqueous phase and deliver electrons to ubiquinone or complex III in the inner-mitochondrial membrane, overcoming the complex I inhibition promoted by rotenone.

Conclusion: Elderberry anthocyanins have potential to be used in mitochondria-targeted formulations to modulate the pathophysiological changes underlying AD from their early stages.

Acknowledgements: This work received financial support from National Funds (FCT/MEC) through project UID/QUI/50006/2013, co-financed by FEDER through COMPETE, under the Partnership Agreement P2020, and from NORTE 2020, under the PORTUGAL 2020 Partnership Agreement, through ERDF (NORTE-01-0145-FEDER-000024).